Development board ATMEGA8 анти-ардуино-одурино. Радиотехника, электроника и схемы своими руками. Arduino USB сделай сам (DIY) Самодельный ардуино на atmega8

28.03.2024

Добрый день. С появлением arduino робототехника, автоматика и другие радио изделия стали нам более доступными. Раньше представить было трудно что с такой простотой можно писать прошивки для микроконтроллеров, с появлением arduino заниматься робототехникой могут даже детишки. Простота платформы arduino позволяет забыть о побитовых операциях и регистрах avr которые использовались повсеместно. Но так как платформа универсальная то и микроконтроллер тоже выбран универсальный. Например в arduino uno предусмотрен atmel atmega328p что даволи излишне для простой обработки нажатий на кнопки, а если делать сразу партию устройств то придется заплатить за незадействованную мощь.

Но так как arduino ide свободно распространяемая, любой без труда может написать дополнения и библиотеки, зачастую они могут быть очень полезными. В данной статье пойдет речь о библиотеке плат на основе ATmega8, ATmega48, ATmega88, ATmega168 под названием Mini Core. Данная библиотека позволят писать скетчи arduino под более слабые микроконтроллеры чем atmega328p, а это позволяет удешевить стоимость устройства за счет рационального использования мощности.

Почему именно эти микроконтроллеры:

  1. Данные микроконтроллеры с теми же выводами и архитектурой и имеют минимальные отличия от atmega328p(заменяемые)
  2. Они дешевые и популярные(некоторые дешевле доллара)
  3. Они все имеют DIP и TQFP корпуса

Данная библиотека поддерживает все индексы микросхемы кроме PB (т.е. A, P, PA), например не стоит использовать ATMEGA168PB-AU.

Микросхемы по характеристикам:

Atmeg328 atmega168 atmega88 atmega48 atmega8
Flash 32 кб 16 кб 8 кб 4 кб 8 кб
ОЗУ 2 кб 1 кб 1 кб 512 б 1 кб
ПЗУ 1 кб 512 б 512 б 256 б 512 б
Каналы ШИМ 6 6 6 6 3

Пора от теории перейти к практике установим Mini Core, для установки понадобиться Arduino IDE версии 1.6.4 и выше. Если у вас нет Arduino или она старше качаем ее с оф. Сайта .

1. Для установки делаем следующее:

2. Запускаем Arduino IDE

3. Откройте меню « Файл» ⇒ «Настройки» .

4. После вышеупомянутых операций закрываем настройки и переходим в меню Откройте меню « Инструменты» ⇒ «Плата:"........."» ⇒ « Менеджер плат...».

5. В менеджере плат выбираем нашу библеотеку и нажимем установка:

Примечание . Если вы используете Arduino IDE 1.6.6, вам может потребоваться закрыть диспетчер плат, а затем снова открыть его.

После установки в меню « Инструменты» ⇒ «Плата:"........."» появятся варианты плат с нашими микроконтроллерами.

Самый удобный вариант для использование данных микроконтроллеров это взять arduino uno с микросхемой в корпусе dip и заменить на нужную. Также можно собрать плату с несложной обвязкой:

Для тех кому нужна распиновка микросхем фото ниже:

Так же не маловажной особенностью является то что авторы добавили возможность выбора кварцевого резонатора по нескольким частотам и параметры контроля питания, что по умолчанию не доступно для стандартных плат. Все манипуляции с данными параметрами производятся в меню-инструменты.

Настройки тактовой частоты:

  • 16 МГц внешний генератор (по умолчанию)
  • 20 МГц внешний генератор
  • 18.432 Mhz внешний генератор *
  • 12 МГц внешний генератор
  • 8 МГц внешний генератор
  • 8 МГц внутренний генератор **
  • 1 МГц встроенный генератор

Для работы с микроконтроллером ATmega8 или с Arduino устройством на ATmega8 в среде разработки Arduino программу Arduino необходимо настроить. Нужно добавить в файл hardware/arduino/boards.txt параметры поддерживаемых устройств на микроконтроллере ATmega8.

Возможно, будет необходимо добавить файлы bootloader (загрузчик) в папку hardware/arduino/bootloaders/optiboot.

Микроконтроллер ATmega8 может работать на частоте 0-16МГц при напряжении ~5В, а ATmega8L на частоте 0-8МГц и ATmega8A на частоте 0-16МГц в широких пределах напряжения питания. Это по паспорту, а практически, при напряжении 5В, все микроконтроллеры серии ATmega8 могут работать на частоте 16МГц с внешним кварцевым резонатором и на частотах 8, 4, 2, 1МГц с внутренним генератором.

Существует вариант платы Arduino на микроконтроллере ATmega8, это Arduino NG. Среда разработки Arduino (Arduino IDE) готова к работе с микроконтроллером ATmega8, но только с одним устройством - это плата Arduino NG с микроконтроллером ATmega8 на частоте 16МГц с внешним кварцевым резонатором. Так обстоят дела в Arduino v. 1.0.6. Кроме того, для Arduino NG предлагается не самый оптимальный и главное не удобный bootloader.

Для того, чтобы была возможность программировать микроконтроллеры ATmega8 работающие на разных частотах с кварцевым резонатором и без него необходимо внести изменения в файл hardware/arduino/boards.txt Например, можно добавить в него следующие секции:

# http://optiboot.googlecode.com # http://homes-smart.ru/index.php/oborudovanie/arduino/avr-zagruzchik ############################################################## atmega8o.name=ATmega8 (optiboot 16MHz ext) atmega8o.upload.protocol=arduino atmega8o.upload.maximum_size=7680 atmega8o.upload.speed=115200 atmega8o.bootloader.low_fuses=0xbf atmega8o.bootloader.high_fuses=0xdc atmega8o.bootloader.path=optiboot50 atmega8o.bootloader.file=optiboot_atmega8.hex atmega8o.bootloader.unlock_bits=0x3F atmega8o.bootloader.lock_bits=0x0F atmega8o.build.mcu=atmega8 atmega8o.build.f_cpu=16000000L atmega8o.build.core=arduino:arduino atmega8o.build.variant=arduino:standard ############################################################## a8_8MHz.name=ATmega8 (optiboot 8 MHz int) a8_8MHz.upload.protocol=arduino a8_8MHz.upload.maximum_size=7680 a8_8MHz.upload.speed=115200 a8_8MHz.bootloader.low_fuses=0xa4 a8_8MHz.bootloader.high_fuses=0xdc a8_8MHz.bootloader.path=optiboot a8_8MHz.bootloader.file=a8_8MHz_a4_dc.hex a8_8MHz.build.mcu=atmega8 a8_8MHz.build.f_cpu=8000000L a8_8MHz.build.core=arduino a8_8MHz.build.variant=standard ############################################################## a8_1MHz.name=ATmega8 (optiboot 1 MHz int) a8_1MHz.upload.protocol=arduino a8_1MHz.upload.maximum_size=7680 a8_1MHz.upload.speed=9600 a8_1MHz.bootloader.low_fuses=0xa1 a8_1MHz.bootloader.high_fuses=0xdc a8_1MHz.bootloader.path=optiboot a8_1MHz.bootloader.file=a8_1MHz_a1_dc.hex a8_1MHz.build.mcu=atmega8 a8_1MHz.build.f_cpu=1000000L a8_1MHz.build.core=arduino a8_1MHz.build.variant=standard ############################################################## a8noboot_8MHz.name=ATmega8 (no boot 8 MHz int) a8noboot_8MHz.upload.maximum_size=8192 a8noboot_8MHz.bootloader.low_fuses=0xa4 a8noboot_8MHz.bootloader.high_fuses=0xdc a8noboot_8MHz.build.mcu=atmega8 a8noboot_8MHz.build.f_cpu=8000000L a8noboot_8MHz.build.core=arduino a8noboot_8MHz.build.variant=standard ##############################################################

Теперь в программе Arduino в меню Сервис / Плата появятся следующие устройства:

  • ATmega8 (optiboot 16MHz ext)
  • ATmega8 (optiboot 8 MHz int)
  • ATmega8 (optiboot 1 MHz int)
  • ATmega8 (no boot 8 MHz int)

Первые три устройства на микроконтроллере ATmega8 содержат bootloader, являются Arduino совместимыми и в них непосредственно можно загружать скетчи (программы) из среды разработки Arduino. Четвертое устройство не содержит bootloader, это может быть отдельная микросхема ATmega8. В ATmega8 (no boot 8 MHz int) скетчи из программы Arduino можно загружать через программатор, в том числе и через программатор на базе платы Arduino.

ATmega8 (optiboot 16MHz ext) работает с внешним кварцевым резонатором, остальные устройства с внутренним генератором.

Параметры в файле hardware/arduino/boards.txt определяют fuse биты, путь к файлу загрузчика (bootloader), тип микроконтроллера и его частоту. Fuse биты записываются в микроконтроллер (с загрузчиком или без него) когда вы выбираете пункт меню Сервис / Записать загрузчик . Fuse биты определяют на какой частоте будет работать Ваш микроконтроллер и другие важные параметры, в том числе и такие, от которых зависит его работоспособность, перепрограммируемость и т.д.

Fuse биты НЕ записываются в микроконтроллер когда вы заливаете скетчи. Если в меню Сервис / Плата будет выбрано не подходящая платформа то:

  • При загрузке скетчей
    • Не подходящая частота - приводит к изменению скорости работы программ
    • Не подходящий процессор - приводит к неработоспособности программ
  • При записи загрузчика
    • Не подходящая частота - может привести к неработоспособности микроконтроллера в данной системе
    • Не подходящий процессор (fuses) - к блокировке микроконтроллера

Внимание , Ваши не корректные действия могут вывести из строя микроконтроллер для восстановления которого потребуется программатор.

Bootloader для микроконтроллера ATmega8.

Optiboot bootloaders для различных рабочих частот микроконтроллера можно скачать с сайта Конструктор загрузчика .

Bootloaders Optiboot - это не зависимая свободная разработка загрузчиков, признанная разработчиками Arduino. Optiboot предназначен для использования в разных вариантах Arduino и для множества микроконтроллеров Atmel. Основные отличия загрузчика Optiboot от конкурентов - это до четырех раз уменьшенный размер кода, сокращение бесполезных задержек в работе микроконтроллера, высокая скорость загрузки скетчей с компьютера.

Размещайте файлы bootloaders в программе Arduino в соответствии с тем, что написано в файле hardware/arduino/boards.txt. Например, для устройства ATmega8 (optiboot 16MHz ext) файл загрузчика необходимо поместить в папку hardware/arduino/bootloaders/optiboot50 и имя файла должно быть optiboot_atmega8.hex

Development board ATMEGA8 анти-ардуино-одурино

Одной из наиболее деструктивно повлиявших на популяризацию любительской радиоэлектроники вещей стало массовое распространение Ардуино (одурино). Это - готовая плата с запаянным микроконтроллером и минимальной обвязкой. Казалось бы, удобная и полезная штука? Не спешите делать такое заключение.

Человек, не знакомый с радиоэлектроникой, получая такую вещь, начинает ей пользоваться. В этом - один из первых и самых главных минусов: человек не постигает азов и даже не учится паять.

Все соединения для ардуины выполняются проводами с наконечниками. Это удобно, но есть есть и существенный недостаток: схемы, с позволения сказать, с использованием ардуино выглядят уродливо - в виде кучи цветных линий. В этом - второй важный минус: человек не учится схемной грамоте.


Под ардуину есть своя среда разработки с примитивным языком, на котором любители написали кучу непрофессиональных, как они их назвали, скетчей - готовых решений для большинства применений. Пользуясь ими, возникает и третий минус: человек не учится программированию, качественно не улучшает знания и не оттачивает мастерство программирования, будучи запертым в тесных рамках примитивной среды разработки.

На самом деле, минусов у ардуины - куда больше, и перечислять их все нет смысла. Речь здесь о том, что же сделать, чтобы получить плюсы.

Всё очень просто. Если ты хочешь заниматься радиоэлектроникой, научись паять: собери свою девелопмент боард с минимальным, но достаточным обвесом. Возьми достоинства ардуины и не бери недостатки. Используй провода с наконечниками для подключения периферии и не используй ардуинную ide.

В итоге ты получишь все базовые преимущества ардуины практически без минусов. Бонусом к этому ты добавишь множество своих плюсов. Если это лирическое вступление тебя убедило, то продолжим.

Итак, наша девелопмент боард содержит:

  • микроконтроллер ATMEGA8
  • разъёмы для графического и символьного дисплеев на популярных контроллерах SED1520 и HD44780 соответственно
  • каждый вывод микроконтроллера продублирован тремя штырьками
  • имеется разъём внутрисхемного программирования для популярного ICSP (ISP) USBASP
  • линии +5 вольт и масса выведены на несколько штырьков в разных местах платы
  • три разноцветных светодиода и одна кнопка, а также кнопка RESET
  • разъём питания 7,5-20 вольт и LDO стабилизатор
  • для графического дисплея имеется формирователь отрицательного напряжения с регулировкой на ICL7660
  • питание цепей АЦП заведено через фильтр
  • есть кварцевый резонатор, но его использование не обязательно
Как видишь, набор более, чем минимальный. Размер платы - 10*10 см. На большой площади удобнее работать. Кстати, ты можешь перекроить под свои нужды всё, что хочешь. Так, как проект ещё не завершён, то он будет развиваться. Поэтому ты можешь высказать свои замечания и предложения по улучшению.

Писать программы можно на любом языке.

Схема v1.0b:


Нажми для увеличения
Кнопка S1 - RESET, предназначена для сброса микроконтроллера. S2, если она нужна, подключается к любому пину. На плате версии 1.0b подключается с нижней стороны платы двумя проводками к линиям VCC и GND. Джампер JP6 CONTR должен быть замкнут, если для символьного дисплея требуется регулировать контрастность переменным резистором R6. Если же контрастность уже установлена на самом дисплее припаянными резисторами, то джампер размыкается. Джампер JP5 PROG должен быть замкнут во время работы. При программировании он размыкается, при этом питание подаётся только на МК и только от разъёма ICSP. Контрастность графического дисплея регулируется переменным резистором R7.

Печатная плата v1.0b.

EGYDuino – это клон Arduino, который можно изготовить самостоятельно, на односторонней печатной плате. Это простое и дешевое решение, которое можно изготовить в домашних условиях, причем на 100% совместимое с Arduino.

Описание

Микроконтроллер ATmega8 отвечает за последовательное подключение по USB. Он может быть запрограммирован с помощью . AVR-CDC создает виртуальный СОМ-порт на ПК после подключения устройства и устанавливает соответствующий драйвер. Микроконтроллер ATmega 8,168 следует запрограммировать с помощью загрузчика ArduinoNG boatloader . Данную операцию можно выполнить с использованием еще одной платы Arduino (выберите ISP программатор) и среды разработки Arduino IDE, или отдельного программатора (USB, последовательного или параллельного), например, USBasp с надлежащим программным обеспечением. Также вы можете использовать загрузчик Arduino Duemilanove для ATmega 168 или 328.

Плата имеет следующие характеристики:

Использует микроконтроллер ATmega8 как интерфейсную ИС
- USB-соединение с ПК
- Стандартная кнопка RESET
- 100% совместимость по выводам с Arduino
- Регулятор 5В
- Выход 3.3В
- Совместимый размер и конструкция
- Все компоненты вставляются в сквозные монтажные отверстия на плате
- USB или DC выключатель питания
- Светодиод для вывода PIN13 с перемычкой
- Светодиод питания
- ICSP-разъем
- Легко изготовляемая
- Микроконтроллеры ATmega8,168,328 с использованием загрузчика arduinoNG
- Стандартное гнездо DC питания

Плата EGYDuino может запитываться через USB-коннектор, или стабилизатор напряжения внешнего адаптера.

Схема

Полная схема устройства показана ниже

Печатная плата

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Микроконтроллер ATmega8-P 1 В блокнот
IC2 МК AVR 8-бит

ATmega328

1 В блокнот
IC3 Линейный регулятор

LM7805

1 В блокнот
D1 Выпрямительный диод

1N4001

1 В блокнот
D2, D3 Стабилитрон 3.6 В 2 В блокнот
С1, С2, С5, С6 Конденсатор 22 пФ 4 В блокнот
С3 Конденсатор 1000 пФ 1 В блокнот
С4, С7, С10 Конденсатор 0.1 мкФ 3 В блокнот
С8, С9 Электролитический конденсатор 100 мкФ 2 В блокнот
R1, R2 Резистор

68 Ом

2 В блокнот
R3 Резистор

1.5 кОм

1 В блокнот
R4, R6 Резистор

10 кОм

2 В блокнот
R5 Резистор

1 кОм

1 В блокнот
R7 Резистор

470 Ом

1 В блокнот
Q1, Q2 Кварцевый резонатор 16 МГц 2 В блокнот
LED1 Светодиод Красный 1

Держа в руках оригинальную плату Ардуино, в голове зародилась мысль о сборке её клона. Посидев, подумав над проектом, было решено уместить все на односторонней плате, а для связи с компьютером снабдить плату микросхемой FT232RL. Во избежание вывода из строя USB порта компьютера, из-за превышения потребляемого тока, я решил пожертвовать возможностью питания от USB, но более детально об этом ходе чуть позже.

Итак, дорогие читатели, представляю вашему вниманию нашу версию клона Ардуино. Встречайте Paduino FT232RL

Как уже говорилось выше, плата имеет недостаток - лишена возможности питания от юсби порта. Однако, благодаря использованию микросхемы FT232RL, на плате присутствует выход 3.3В. Также к доп. функционалу хочется отнести наличие джампера автоматической загрузки (ENABLE), а также джампера (JP LED13), позволяющего отключить не всегда используемый светодиод подключенный к пину под номером 13.

Также, вдобавок к уже имеющемуся выходу Vin на Arduino, был добавлен выход VTG INPUT . На мой взгляд, стандартный вывод Vin имеет ряд недостатков, хотя с другой стороны плюсов. К недостаткам можно отнести потерю напряжения на диоде (0.6-0.8 вольта), также при запитывании Arduino не от разъема питания, а непосредственно от гребенок мы теряем защиту от переполюсовки т.к. выход Vin на схеме расположен после защитного диода. На выводе VTG INPUT мы же всегда имеем напряжение равное входному без каких либо потерь, а также при запитывании Arduino через гребенки функционал защиты от переполюсовки сохраняется т.к. на схеме выход расположен перед защитным диодом. К достоинствам вывода Vin можно отнести то, что при правильно поданном питании на нем всегда будет плюс, в противном же не будет ничего, в то время как на VTG INPUT либо минус либо плюс.

Смыслом данной модификации является возможность питания самодельных мотр шилдов представленных на этом сайте и нашего клона Arduino от одного источника питания без каких либо потерь питающего напряжения.

Так, как ФТшка в данной сборке использует только землю и сигнальные линии USB порта, то, полистав даташит, повесим на неё обвязку в следующей конфигурации:

В этот раз все этапы изготовления я пропущу. Из процесса изготовления приложу только фото протравленной и залуженной платы до начала монтажа элементов.

Пару слов об FT232RL. Микросхемка довольно таки мелких размеров. Для того чтобы вы смогли оценить свои силы, привожу фото ФТшки на десятикопеечной монетке.

Приставляем Фтшку к плате, отцентровываем, смачиваем ножки флюсом, берем на жало паяльника припой в очень малом количестве, и быстро проходимся по каждой ножке. Если вы в пайке новичок, и еще не научились паять быстро, в одно касание, советую делать интервал в 10-15 секунд после каждой ножки.

Что касается размеров, то Paduino выходит не на много больше оригинальной Arduino.

Все, с изготовлением разобрались. Для работы в среде Arduino в память контроллера осталось лишь залить bootloader .

После заливки бутлоадера, нам уже ничто не мешает приступить непосредственно к программированию.

Для начала необходимо скачать среду Arduino. Скачать последнюю версию можно на сайте производителя .

Подключаем наш клон к компьютеру, при наличии интернета устройство должно определиться автоматически.

Если при подключении драйвер на FT232RL не уcтановился в автоматическом режиме, тогда скачаваем драйвер на свою ОС с сайта производителя FTDI.

В комментариях к статье, человек указал на возможность конфликта новых драйверов на FT232RL с сайта производителя. В связи с этим лучше установить драйвер из среды Arduino IDE (arduino-1.0.5-windows\arduino-1.0.5\drivers\FTDI USB Drivers)

Открываем скачанную идешку и выбираем плату. Плата будет отображаться как Arduino NG or older w/ATmega 8 при использовании контроллера ATmega 8, либо как Arduino NG or older w/ATmega 168 при использовании ATmega168.

Затем выбираем COMport к которому подключена плата. У меня кабель определился под девятым номером.

Для проверки работоспособности зальем в контроллер тестовую программку-мигалку, выполнив следующие действия

После успешной загрузки вы должны увидеть следующее

Если все заработало, то поздравляю вас. Вы собственноручно собрали полноценный клон USB Arduino.

В архиве лежит шаблон под ЛУТ и список деталей.

Открываем изображение => Печать => Во всю страницу

Для облегчения распайки smd компонентов с обратной стороны платы, где нет маркировки, приведу картинку.

Хочется отметить, что на smd конденсаторах нет маркировки номиналов, но для облегчения распайки на картинке я их нанес. 104 - 0,1 мкФ, 22 - 22пФ.